Home | Breaking News | Ripples in space and time: Scientists detect four new gravitational waves
Scientists have made four new detections of gravitational waves -- ripples in the fabric of space and time -- emanating from separate black hole mergers.(AFP)

Ripples in space and time: Scientists detect four new gravitational waves

In this coalescence, which happened roughly 5 billion years ago, an equivalent energy of almost five solar masses was converted into gravitational radiation, researchers said.

WT24 Desk

Scientists have made four new detections of gravitational waves — ripples in the fabric of space and time — emanating from separate black hole mergers, PTI reports.

So far the US-based LIGO and Europe-based VIRGO gravitational-wave detectors have recorded gravitational waves from a total of 10 black hole mergers and one merger of neutron stars. The new events are known as GW170729, GW170809, GW170818, and GW170823, in reference to the dates they were detected.

GW170729, detected in the second observing run on July 29, 2017, is the most massive and distant gravitational-wave source ever observed.

In this coalescence, which happened roughly 5 billion years ago, an equivalent energy of almost five solar masses was converted into gravitational radiation, researchers said.

The second observing run, which lasted from November 30, 2016, to August 25, 2017, yielded one binary neutron star merger and seven additional binary black hole mergers, including the four new gravitational-wave events being reported now. GW170814 was the first binary black hole merger measured by the three-detector network, and allowed for the first tests of gravitational-wave polarization (analogous to light polarization).

The event GW170817, detected three days after GW170814, represented the first time that gravitational waves were ever observed from the merger of a binary neutron star system.

One of the new events, GW170818, which was detected by the global network formed by the LIGO and Virgo observatories, was very precisely pinpointed in the sky.

The position of the binary black holes, located 2.5 billion light-years from Earth, was identified in the sky with a precision of 39 square degrees.

“The release of four additional binary black hole mergers further informs us of the nature of the population of these binary systems in the universe and better constrains the event rate for these types of events,” said Albert Lazzarini, Deputy Director of the LIGO Laboratory at California Institute of Technology in the US.

“The next observing run, starting in Spring 2019, should yield many more gravitational-wave candidates, and the science the community can accomplish will grow accordingly,” said David Shoemaker, spokesperson for the LIGO Scientific Collaboration.

Almost all black holes formed from stars are lighter than 45 times the mass of the Sun, researchers said.

Thanks to more advanced data processing and better calibration of the instruments, the accuracy of the astrophysical parameters of the previously announced events increased considerably.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

%d bloggers like this: